MRI and volume homeostasis in hemodialysis patients

Published: 25-05-2016 Last updated: 17-04-2024

To investigate the application of magnetic resonance imaging in detecting changes in tissue water content in patients undergoing hemodialysis.

Ethical review Approved WMO

Status Pending

Health condition type Renal disorders (excl nephropathies)

Study type Observational invasive

Summary

ID

NL-OMON43479

Source

ToetsingOnline

Brief title

MRI in hemodialysis patients

Condition

Renal disorders (excl nephropathies)

Synonym

dryweight, hemodialysis

Research involving

Human

Sponsors and support

Primary sponsor: Maasstadziekenhuis

Source(s) of monetary or material Support: beurs Maasstadziekenhuis raad van bestuur

Intervention

Keyword: dry weight, hemodialysis, MRI, volume homeostasis

1 - MRI and volume homeostasis in hemodialysis patients 6-05-2025

Outcome measures

Primary outcome

Change in water content, expressed as percentage water and change in diffusion coefficient in brain, liver and calf muscle before and after dialysis.

Secondary outcome

Weight measurement, diameter inferior vena cava

Study description

Background summary

End-stage renal insufficiency requires renal replacement therapy, either a form of dialysis or kidney transplantation. The major difficulty concerning dialysis is maintaining volume homeostasis. Assessment of volume status is mostly based on clinical examination of the patient and the weight at the end of the previous dialysis treatment. Wrong assessment induces either hypervolemia or hypovolemia, both negatively impacting the clinical condition of the patient and residual renal function. More objective measurements such as biochemical markers, inferior vena cava ultrasound and bioimpedance analysis all possess substantial limitations. We hypothesize that magnetic resonance imaging could be an accurate diagnostic tool for assessment of tissue water content and total body volume status.

Study objective

To investigate the application of magnetic resonance imaging in detecting changes in tissue water content in patients undergoing hemodialysis.

Study design

Quasi-experimental observational study

Study burden and risks

The burden for the individual participant consists of undergoing MRI scanning, which could be considered time-consuming and claustrophobic. One MRI session might last up to half an hour to obtain images of brain, liver and calf muscle. Patient claustrophobia is a relative contra-indication for undergoing a MRI

scan. In addition, inferior vena cava ultrasound measurement, weight measurement and bioimpedance analysis will be a substantial part of participation. Since all measurements will be performed before and after one single hemodialysis session, there is no need for additional hospital visits. Potential risks linked to participation are minimal. Each patient will be screened for ferromagnetic implants, pregnancy and claustrophobia through usage of a standardised questionnaire.

Contacts

Public

Maasstadziekenhuis

Maasstadweg 21 Rotterdam 3079DZ NI

Scientific

Maasstadziekenhuis

Maasstadweg 21 Rotterdam 3079DZ NL

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age

Adults (18-64 years) Elderly (65 years and older)

Inclusion criteria

hemodialysis, stable medical situation, > 3 litres ultrafiltration

Exclusion criteria

contra indication MRI acute kidney failure

Study design

Design

Study type: Observational invasive

Masking: Open (masking not used)

Control: Uncontrolled

Primary purpose: Diagnostic

Recruitment

NL

Recruitment status: Pending

Start date (anticipated): 01-06-2016

Enrollment: 10

Type: Anticipated

Ethics review

Approved WMO

Date: 25-05-2016

Application type: First submission

Review commission: TWOR: Toetsingscommissie Wetenschappelijk Onderzoek

Rotterdam e.o. (Rotterdam)

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register ID

CCMO NL56242.101.16